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Abstract: We investigate the robustness with respect to the introduction of nonconfor-

mality of five properties of strongly coupled plasmas that have been calculated in N = 4

supersymmetric Yang-Mills (SYM) theory at nonzero temperature, motivated by the goal

of understanding phenomena in relativistic heavy ion collisions. (The five properties are

the jet quenching parameter, the velocity dependence of screening, and the drag and trans-

verse and longitudinal momentum diffusion coefficients for a heavy quark pulled through

the plasma.) We do so using a toy model in which nonconformality is introduced via a

one-parameter deformation of the AdS black hole dual to the hot N = 4 SYM plasma.

For values of this parameter which correspond to a degree of nonconformality comparable

to that seen in lattice calculations of QCD thermodynamics at temperatures a few times

that of the crossover to quark-gluon plasma, we find that the jet quenching parameter is

affected by the nonconformality at the 30% level or less, the screening length is affected

at the 20% level or less, but the drag and diffusion coefficients for a slowly moving heavy

quark can be modified by as much as 80%. However, we show that all but one of the five

properties that we investigate become completely insensitive to the nonconformality in the

high velocity limit v → 1. The exception is the jet quenching parameter, which is unique

among the quantities that we investigate in being “infrared sensitive” even at v = 1, where

it is defined. That is, it is the only high-velocity observable that we investigate which is

sensitive to properties of the medium at infrared energy scales proportional to T , namely

the scales where the quark-gluon plasma of QCD can be strongly coupled. The other four

quantities all probe only scales that are larger than T by a factor that diverges as v → 1,

namely scales where the N = 4 SYM plasma can be strongly coupled but the quark-gluon

plasma of QCD is not.
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1. Introduction and summary

The AdS/CFT correspondence [1] has provided an important tool for understanding the

dynamics of many and varied strongly coupled gauge theories. By now, it has been applied

at nonzero temperature to gauge theory plasmas in theories that are conformal, or not;

theories that are confining at zero temperature, or not; theories with varying degrees of

supersymmetry; theories which at weak coupling contain both fundamentals and adjoints,

or only adjoints; to plasmas with zero or nonzero chemical potentials; to plasmas that are

static or expanding. In terms that are qualitative enough to apply to all these examples, the

correspondence states that a (3+1)-dimensional gauge theory plasma at some temperature

T is equivalent to a (particular) string theory in a (particular) curved higher-dimensional

spacetime which includes a black hole horizon with Hawking temperature T . In the limit in

which Nc, the number of colors in the gauge theory, and λ ≡ g2Nc, the ’t Hooft coupling of
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the gauge theory, are both taken to infinity, the equivalent (dual) gravity description of the

strongly coupled gauge theory plasma becomes classical. This means that, in the regime

of large Nc and strong coupling, calculations of various dynamical properties of strongly

coupled gauge theory plasmas (that are difficult to calculate in the gauge theory per se)

become equivalent to tractable calculations in a classical spacetime background. We shall

specify five examples of such calculations below.

The simplest, most symmetric, example of a gauge theory whose dual gravity descrip-

tion is the original example discussed by Maldacena: N = 4 supersymmetric Yang-Mills

theory (SYM), which at nonzero temperature is dual to Type IIB string theory a (9 + 1)-

dimensional spacetime given by (4 + 1)-dimensional Anti-de Sitter (AdS) space, with the

five remaining compact dimensions forming an S5. The metric for the AdS black hole can

be written as

ds2 = − r2

R2

(

1 − r4
0

r4

)

dt2 +
r2

R2
d~x2 +

R2

r2

dr2

1 − r4
0

r4

=
R2

z2



−
(

1 − z4

z4
0

)

dt2 + dx2
1 + dx2

2 + dx2
3 +

dz2

1 − z4

z4
0



 , (1.1)

where R is the AdS curvature, where z = R2/r, and where the black hole horizon is at

r = r0 = πR2T , meaning z = z0 = 1
πT . In some respects, the gauge theory can be thought

of as living at the (3 + 1)-dimensional “boundary” z = 0. However, it is important to

remember that the equivalence between the gauge theory and its gravity description is

holographic, in that all of the physics at varying values of z in the gravity description is

encoded in the gauge theory, with the fifth-dimension-position z in the spacetime (1.1)

corresponding to length scale in the (3 + 1)-dimensional gauge theory [1, 2].

Although many (in fact infinitely many) other examples of gauge theories with dual

gravity descriptions are known, such a description has not yet been found for SU(Nc) gauge

theory (with or without quarks in the fundamental representation). And, furthermore, all

known theories with gravity duals differ from QCD in important respects. Taking N = 4

SYM as an example, at weak coupling it has more adjoint degrees of freedom than in QCD,

it has no fundamental degrees of freedom, and it is conformal. And, at zero temperature

N = 4 SYM is supersymmetric and does not feature either confinement or chiral symmetry

breaking. However, the plasmas of the two theories, namely N = 4 SYM at T > 0 and QCD

at T above Tc ∼ 170 MeV, are more similar than their vacua. Neither plasma confines or

breaks chiral symmetry, and neither is supersymmetric since T 6= 0 breaks supersymmetry.

The successful comparison of data from heavy ion collisions at RHIC (on azimuthally

asymmetric collective flow) with ideal (zero shear viscosity η) hydrodynamics indicates

that, somewhat above Tc, the QCD plasma is a strongly coupled liquid [3]. Strongly

coupled liquids may not have any well-defined quasiparticles, so the differences between

the quasiparticles of the two theories at weak coupling need not be important, at least for

judiciously chosen ratios of observables. And, lattice calculations [4 – 7] indicate that above

∼ 2Tc, the thermodynamics of the QCD plasma becomes approximately scale invariant.

More generally speaking, it is often the case that macroscopic phenomena in a sufficiently
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excited many-body system are common across large universality classes of theories that

differ in many (microscopic) respects. This raises the exciting possibility that one may

be able to gain insights into the thermodynamics and dynamics of the strongly coupled

plasma of QCD using calculations in other gauge theories whose gravity duals are currently

known.

Many authors have developed the strategy of calculating dynamical properties of gauge

theory plasmas (that are of interest because they can be related to phenomena in heavy

ion collision experiments) by calculating them in N = 4 SYM and other theories with

gravity duals. Turning the qualitative insights obtained in this way into semiquantitative

inferences for QCD (or even for QCD at large Nc) requires understanding what observables

are universal across what classes of strongly coupled plasmas or, if not that, understanding

how observables change as the strongly coupled N = 4 SYM plasma is deformed in various

ways that make it more QCD-like. At present, the quantity for which the evidence of a

universality of this sort is strongest is η/s, the ratio of the shear viscosity to the entropy

density: in the large Nc and strong coupling limit, it is given by 1/4π for any gauge theory

with a dual gravity description [8 – 10]. The discovery that in an infinite class of conformal

gauge theories the jet quenching parameter q̂, that we shall discuss below, is given by√
λT 3 times a pure number that is proportional to

√
s/Nc suggests a second quantity with

a degree of universality [11], but one that at at present is only known to apply to conformal

theories.

It is clearly critical to extend AdS/CFT calculations of dynamical properties of gauge

theory plasmas to nonconformal theories. Unfortunately, the known examples of noncon-

formal gauge theories with gravity duals are rather complicated at nonzero temperature,

see for example refs. [12, 13], making it hard to extract insights from them without exten-

sive, probably numerical, study. Here we will take a pragmatic approach, using a simple

toy model, similar to that introduced at zero temperature in ref. [14] and at nonzero tem-

perature in refs. [15, 16] and in the form that we shall use by Kajantie, Tahkokallio and

Yee [17], in which (1.1) is deformed into the string frame metric

ds2 =
R2e

29cz2

20

z2



−
(

1 − z4

z4
0

)

dt2 + dx2
1 + dx2

2 + dx2
3 +

dz2

1 − z4

z4
0





= e
29
20

c R4

r2

[

− r2

R2

(

1 − r4
0

r4

)

dt2 +
r2

R2
d~x2 +

R2

r2

dr2

1 − r4
0

r4

]

. (1.2)

Here, the dimensionful quantity c defines a one-parameter nonconformal deformation of the

AdS black hole. Certainly our investigations should also be repeated for other examples of

such deformations. The advantage of using the specific form (1.2) is its tractability together

with the fact that the authors of ref. [17] have estimated that choosing c ≃ 0.127 GeV2

makes the thermodynamics of this toy model most similar to QCD thermodynamics, de-

termined by lattice calculations. Specifically, they introduce a second toy model for QCD

below Tc, choose its parameters to give a reasonable meson spectrum in vacuum, and

then find that c = 0.127 GeV2 puts the transition between their low and high temperature

models — whose construction is their purpose — at Tc = 170 MeV, as in QCD.
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We shall determine how five dynamical observables, previously calculated at c = 0,

depend on c. Since in the absence of c the only dimensionful quantity in the otherwise

conformal theory is T , the magnitude of the nonconformal effects that we compute must

be controlled by the dimensionless ratio c/T 2. We shall plot our results for values of this

parameter that lie within the range 0 ≤ c/T 2 ≤ 4, which corresponds to allowing a c as large

as 0.36 GeV2 at T = 300 MeV. Note that the metric (1.2) does not correspond to a solution

to supergravity equations of motion, and note furthermore that the form of the metric for

the five compact dimensions is unspecified. These ambiguities are what make the model

a model: with c 6= 0, it is impossible to say what, if any, gauge theory the metric (1.2) is

dual to. This makes it impossible to give a rigorous determination of its entropy density

s, as the authors of ref. [17] explain, or to determine its weak coupling degrees of freedom.

So, we shall not use this model to test how other observables depend on these quantities.

Our sole purpose is to explore the effects of the introduction of nonconformality.

Although it is not possible to give a rigorous argument for the entropy density s

corresponding to the metric (1.2), given that the metric is not known to be a solution to

supergravity equations of motion, the authors of ref. [17] have conjectured that s is given

by

s =
π2N2

c T 3

2
exp

(

− 3

2π2

c

T 2

)

. (1.3)

We can use this expression to estimate the range of values of c that compare reasonably to

QCD thermodynamics, as follows. We take this expression and obtain the energy density ε

from dε/dT = Tds/dT , the pressure P = Ts−ε, and then (ε−3P )/ε which is a measure of

nonconformality. We then find that fitting the results for this quantity in the toy model we

are using to the lattice calculations of this quantity in QCD from ref. [5] requires c varying

from c ≈ 0.18 GeV2 at T = 300 MeV to c ≈ 0.11 GeV2 at T = 700 MeV, and c ≃ 0.13 GeV2

does reasonably well over this entire temperature range. This gives us further confidence

that when we plot our results over the range 0 ≤ c/T 2 ≤ 4 we are turning on a degree

of nonconformality that encompasses and exceeds that observed in QCD thermodynamics

at T = 300 MeV. At this temperature, the range 0.11 GeV2 < c < 0.18 GeV2 corresponds

to 1.2 < c/T 2 < 2.0. Keep in mind that although c is the fixed parameter in the model,

it will enter all of our results through the dimensionless parameter c/T 2. So, when we

plot our results over 0 < c/T 2 < 4, we can think of the higher (lower) values of c/T 2 as

corresponding to lower (higher) temperatures.

We shall calculate five quantities that have previously been argued to be of interest

because, in QCD, they are related to phenomena in heavy ion collision experiments. We

begin in section 2 by calculating the jet quenching parameter q̂, as in refs. [18, 19, 11].

This property of the strongly coupled plasma enters into the description of how a parton

moving through this plasma with energy E loses energy by radiating gluons [20 – 22]. Gluon

radiation is the dominant energy loss mechanism in the limit where E ≫ kT ≫ T , with

kT being the typical transverse momentum of the radiated gluons, and upon assuming

that αs(kT ) is small [20 – 24]. That is, the analysis of jet quenching in this limit is based

upon the assumption that QCD can be considered weakly coupled at the scale kT , even

though its quark-gluon plasma (at scales ∼ T ) is strongly coupled. In this regime, the gluon
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radiation itself is described via a weakly coupled QCD formalism in which the one property

of the thermal medium that enters is q̂, which must be computed at strong coupling. In

section 3, we turn to probes of the plasma in a completely different kinematic regime. We

shall calculate three observables that describe the motion of a heavy enough quark (mass

M) moving through the strongly coupled plasma with a low enough velocity v, where the

criterion that must be satisfied by M and v is [25, 26, 11]

M >

√
λT

(1 − v2)1/4
. (1.4)

Because we are no longer taking the v → 1 limit, even in a theory like QCD that is

weakly coupled in the ultraviolet we cannot assume that energy loss is dominated by gluon

radiation and cannot assume that there is a separation of scales which justifies treating

a part of the problem at weak coupling even when the plasma itself is strongly coupled.

Instead, it is worth investigating a formalism in which the entire calculation is done at

strong coupling. In the dual gravity theory, the criterion (1.4) corresponds to requiring

that the velocity of the quark not exceed the local speed of light at the position in z where

quarks of mass M are located. When (1.4) is satisfied, the moving quark is described in

the dual gravity theory as trailing a string that drags behind the moving quark [27, 28],

meaning that the quark feels a drag force and diffuses. The three parameters that we

calculate are the drag coefficient µ (introduced and calculated at c = 0 in [27, 28]) and the

diffusion constants κT and κL for its transverse and longitudinal motion (introduced and

calculated at c = 0 in [29, 25, 26]). The effects of the nonconformal deformation of the

AdS black hole metric on both µ and q̂ have been calculated previously in ref. [16]. Finally,

in section 4 we determine how c affects the velocity dependence of the screening length Ls

defined by the potential between a quark-antiquark pair with mass M moving through the

plasma with velocity v [30 – 32, 11], again satisfying (1.4) which in this case corresponds

to the requirement that Ls be greater than the Compton wavelength of an individual

quark [11]. We shall show that, for 0 < c/T 2 < 4, the effects of c on the jet quenching

parameter and on the screening length are modest. For example, q̂ increases by about 14%

(28%) for c/T 2 = 2 (c/T 2 = 4) while the screening length increases by about 9% (20%).

This indicates that these quantities are robust against introduction of nonconformality to

a degree larger than that indicated by lattice study of QCD thermodynamics. The drag

coefficient and the two momentum diffusion constants for a heavy slowly moving quark

are somewhat less robust, increasing by about 34% (80%) for c/T 2 = 2 (c/T 2 = 4). Of

course, our conclusions are only quantititave within one toy model. Other examples in

which nonconformality is introduced should also be studied.

The metric (1.2) has the feature that it becomes the metric (1.1) of an AdS black

hole near z = 0, but near the horizon it is modified by the dimensionful parameter c.

This allows us to address a further issue, that is both qualitative and important. QCD,

being asymptotically free, is weakly coupled in the ultraviolet. The plasma in a strongly

coupled conformal theory like N = 4 SYM is strongly coupled in the ultraviolet as well

as at scales of order T . This means that the only properties of the plasma in a strongly

coupled conformal gauge theory that may yield insight into the strongly coupled plasma
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of QCD are those properties which are determined by the physics at scales of order T , not

by the ultraviolet physics. It is impossible to use calculations done within N = 4 SYM

to determine which quantities are “infrared sensitive” in this sense, precisely because the

theory is conformal: the parameter z0 specifies the location of the horizon and the value

of the temperature T = 1/(πz0), namely the gauge theory physics at scales ∼ T , and at

the same time specifies the form of the metric (1.1) at small z, namely the gauge theory

physics in the ultraviolet. So, seeing z0 and hence T occurring in the calculated results for

q̂, µ, κT , κL and Ls in N = 4 SYM does not allow us to determine whether any of these

quantities are infrared sensitive. In order to make such a determination, we must modify

the theory in the infrared, i.e. in the vicinity of z = z0, in a way that leaves it unmodified

at z → 0, and determine which quantities are modified and which not. Note that in a

gauge theory whose gravity dual is given asymptotically (i.e. at z → 0) by the AdS black

hole metric (1.1), the parameter z0 that occurs in the asymptotic metric will, in the generic

case, not be related to the temperature in any simple way. Absent conformality, there is

no longer any reason for the true temperature T , defined by the metric at the horizon, to

to be related in any simple way to the parameter z0 defined by the AdS black hole metric

at z → 0.1 Our toy model is not generic enough to manifest this effect — the temperature

remains 1/(πz0) even when c 6= 0 — but we can nevertheless use the dependence on c/T 2

to diagnose infrared sensitivity.

We find that q̂ is infrared sensitive — as noted above it changes by 28% for c/T 2 = 4.

The other four quantities that we study are all infrared sensitive at low velocity. However,

if we take v → 1 and M → ∞ while maintaining the criterion (1.4) — for example by taking

M → ∞ first — we find that µ, κT , κL and Ls all become infrared insensitive. That is,

they become independent of c/T 2 in this limit, meaning that they cannot see a modification

of the gauge theory at scales ∼ T . In this v → 1 limit, they are determined entirely by

the ultraviolet physics in the gauge theory, making it unlikely that their calculation in

N = 4 SYM in this limit can be used to draw quantitative lessons for QCD. The jet

quenching parameter, on the other hand, is defined at v ≡ 1 and is infrared sensitive. This

is consistent with its role in jet quenching calculations as the parameter through which

the physics of the strongly coupled plasma at scales of order the temperature enters into

the calculation of how partons moving through this plasma lose energy in the high parton

energy limit.

At a qualitative level, our results for the infrared sensitivity of all five observables can be

guessed by examining how they are computed in the strongly coupled N = 4 SYM theory.

The jet-quenching parameter q̂ is extracted from the short-transverse-distance behavior of

the thermal expectation value of a light-like Wilson loop that is long in light-like extent

but short in transverse extent. In the dual gravity description, this expectation value can

be calculated by finding the extremal configuration of a string connecting a quark-anti-

quark pair moving at the speed of light. The extremal string configuration touches the

horizon [18]. In the short transverse distance limit, after subtracting the self-energy of

1Consider the (4 + 1)-dimensional extremal Reissner-Nordstrom black hole as an example that is not

directly relevant but in which this disconnect is particularly dramatic: the asymptotic metric for this

spacetime defines a z0, but the Hawking temperature is zero.
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each quark, one is left with mostly the contribution of the part of the extremal string

worldsheet that is near the horizon. It is therefore reasonable that, upon calculation, we

find that q̂ is infrared sensitive, as is also expected given the role that it plays in the

theory of jet quenching. In contrast, a heavy quark moving through the hot plasma with

velocity v, satisfying (1.4), is described by the trailing string worldsheet first analyzed in

refs. [27, 28] which has a “worldsheet horizon” on it located at z = z0(1−v2)1/4 as described

in refs. [25, 26]. The quantities µ, κT and κL are determined by the string worldsheet

outside the worldsheet horizon, namely in the region 0 < z < z0(1−v2)1/4. (µ is determined

by the momentum flow along the string worldsheet outside the worldsheet horizon; the

diffusion constants κT and κL are determined from two-point functions describing the

fluctuations of the worldsheet coordinates outside the worldsheet horizon.) So, if we take

the v → 1 limit (while increasing M so as to maintain (1.4)) we expect these quantities

to become completely infrared insensitive, sensitive only to the ultraviolet physics. Our

explicit calculation confirms this expectation. The argument for the screening length is

similar. As v → 1 (while maintaining (1.4)) the velocity dependent screening length shrinks,

Ls(v) ∼ Ls(0)(1 − v2)1/4 [30 – 32, 11], and the string worldsheet bounded by the quark-

antiquark pair — which determines the potential and hence Ls — only explores the (4+1)-

dimensional spacetime in the region 0 < z . z0(1 − v2)1/4. We therefore also expect, and

find, that Ls is infrared insensitive in the v → 1 limit. It is worth noting, however, that

for charmonium (or bottomonium) mesons with velocities corresponding to the transverse

momenta with which they are produced in RHIC (or LHC) collisions, Ls remains infrared

sensitive, probing the strongly coupled medium at scales not far above T . And, the velocity-

dependence of the screening length is described reasonably well by Ls(v) ∼ Ls(0)(1−v2)1/4

at all velocities, large or small, up to corrections that we shall evaluate.

So, the five quantities that we investigate are robust to varying degrees, in the sense

that if we turn on nonconformality parametrized by a value of c/T 2 that is about twice

as large as that which best approximates QCD thermodynamics at T = 300 MeV within

the model of ref. [17], the jet quenching parameter increases by about 30% and at low

velocities the screening length increases by about 20% while the heavy quark drag and

momentum diffusion coefficients increase by about 80%. If we then take the limit v → 1

while increasing the quark mass M so as to maintain (1.4), we find that the drag and

diffusion coefficients and the screening length all become completely insensitive to the

nonconformal modification of the physics at scales ∼ T that we have introduced. In

this limit, these quantities all become infrared insensitive. This makes it likely that the

calculation of these quantities in a conformal theory like N = 4 SYM can only be used to

learn about the strongly coupled plasma of QCD at a broadly qualitative level. In contrast,

the jet quenching parameter q̂ is defined at v ≡ 1 and is infrared sensitive, probing the

properties of the plasma at scales of order the temperature where it is strongly coupled in

both QCD and N = 4 SYM.

2. Jet quenching parameter

The jet quenching parameter q̂ is the property of the plasma that enters into the description

– 7 –
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of how a parton moving through this plasma with energy E loses energy by radiating gluons

with typical transverse momentum kT in the limit where E ≫ kT ≫ T and upon assuming

that αs(kT ) is small enough that QCD can be considered weakly coupled at this scale, even

though its quark-gluon plasma (at scales ∼ T ) is strongly coupled [20 – 24]. To the degree

that these assumptions are valid, parton energy loss is dominated by gluon radiation. In

experiments at RHIC, the jets studied correspond to partons with E at most a few tens

of GeV [3]. At the LHC, although the quark-gluon plasma being studied is likely to be at

most a factor of two hotter than that at RHIC, the jets whose quenching will be studied

will have energies of a few hundreds of GeV [33], putting the assumptions upon which

the definition and extraction of the jet quenching parameter is based on more quantitative

footing.

If the quark-gluon plasma were weakly coupled, q̂ would be proportional to µ2/λ̃,

where µ is the inverse of the Debye screening length and λ̃ is a suitably defined mean

free path for weakly coupled quasiparticles [20]. Up to a logarithm, in a weakly coupled

quark-gluon plasma q̂ ∝ g4N2
c T 3 [20, 34]. Wiedemann observed that, still for a weakly

coupled plasma, q̂ can instead be extracted from the small-L behavior of a rectangular

adjoint Wilson loop whose long sides, of length L−, are light-like and whose short sides,

of length L, are transverse to the light-cone [22]. L− corresponds to the extent of the

medium through which the radiated gluon travels and 1/L corresponds to the transverse

momentum of the radiated gluon. Wiedemann and two of us suggested that this definition

can be generalized to a strongly coupled plasma, and calculated q̂ for the strongly coupled

N = 4 SYM plasma [18]. In this section, we repeat this calculation of q̂ for the metric (1.2)

of ref. [17], deformed to introduce nonconformality.

2.1 Calculation

In the large Nc limit, the expectation value of the adjoint Wilson loop is the square of that

in the fundamental representation. If we in addition take the large λ limit and use the

AdS/CFT correspondence, the expectation value of the Wilson loop in the fundamental

representation can be computed as [35, 36]

〈W (C)〉 = eiSI , SI = S(C) − 2S0 , (2.1)

where S(C) is the Nambu-Goto action for the extremal worldsheet bounded at z = 0 by

the Wilson loop contour C and S0 is the Nambu-Goto action for an individual quark. For

a rectangular Wilson loop extending a distance L− along the x− light-like direction and

a distance L along a transverse direction, in the regime L− ≫ 1/T ≫ L the expectation

value of the Wilson loop in the fundamental representation takes the form [18, 11]

〈W (C)〉 ≡ e
− 1

8
√

2
q̂L−L2

, (2.2)

which defines the relation between the jet quenching parameter q̂ and the Wilson loop. Let

us consider a more general non-conformal metric of the form

ds2 = g(r)
[

−(1 − f(r))dt2 + d~x2
]

+
1

h(r)
dr2 , (2.3)
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which includes both (1.1) and (1.2) as special cases. Buchel demonstrated in [19] that

in the generic spacetime metric given by (2.3), the extremal string worldsheet connecting

a light-like quark-antiquark pair always touches the horizon, as had been demonstrated

in ref. [18] for the AdS black hole (1.1). And, furthermore, Buchel showed that upon

evaluating the Wilson loop the jet quenching parameter q̂ is given in terms of the string

tension 1/(2πα′) and the functions appearing in the generic metric (2.3) by

q̂ =
1

πα′

(

∫ ∞

r0

dr
√

fg3h

)−1

, (2.4)

where r0 is the coordinate of the black hole horizon. The metric (1.2) corresponds to

g(r) =
r2

R2
e

29
20

c R4

r2 ,

f(r) =
r4
0

r4
, (2.5)

h(r) =
r2

R2

(

1 − r4
0

r4

)

e−
29
20

c R4

r2 ,

and we shall assume that R is related to λ by R2/α′ =
√

λ.2 Hence, we find that in the

metric (1.2) the jet quenching parameter is given by

q̂ =
R4

πα′





∫ ∞

r0

dr
e−

29
20

c R4

r2

r2
0

√

r4 − r4
0





−1

=
√

λπ2T 3

(

∫ ∞

1
dx

e−
29c

20π2T2x2

√
x4 − 1

)−1

, (2.6)

where we have used r0 = πR2T . The integral in (2.6) can be evaluated analytically, and

the result involves modified Bessel functions of the first kind [16]. With c = 0, it is given

by
√

πΓ(5
4)/Γ(3

4 ) which yields q̂ for N = 4 SYM theory [18]. The result (2.6) was obtained

previously in ref. [16].

From (2.6) we see that q̂ ∝ λ
1
2 N0

c meaning that, with c 6= 0 as with c = 0, the jet

quenching parameter is not proportional to the entropy density or to the number density

of scatterers or quasiparticles as at weak coupling [18], consistent with the absence of any

quasiparticle description of the strongly coupled plasma. Within the formalism of ref. [37],

this qualitative conclusion can be phrased as the statement that multiple gluon correlations

are just as important as two gluon correlations in the plasma of strongly coupled N = 4

SYM. And, it is further highlighted by the result that the ratios of the jet quenching

parameters of different strongly coupled conformal theories are given by the ratios of the

square roots of their entropy densities [11].

2Since the metric (1.2) reduces to the AdS black hole metric (1.1) at small z — in the ultraviolet in the

field theory — the relation between R and λ is R2/α′ =
√

λ in the ultraviolet. If we knew to what field

theory the deformed metric (1.2) is dual, i.e. if we knew what the action was whose supergravity equations

of motion were solved by (1.2), we can presume that λ would run in some way. As (1.2) is just a toy

model that we are using to introduce nonconformality, we cannot determine how λ runs. So, we shall use

R2/α′ =
√

λ throughout.

– 9 –
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Figure 1: The dependence of the jet quenching parameter on the nonconformality in the metric

( 1.2). We plot q̂/(
√

λT 3) versus c/T 2.

In figure 1, we plot the dimensionless quantity q̂/(
√

λT 3) against the dimensionless

quantity c/T 2, through which nonconformality enters the calculation. The dependence on

c/T 2 is almost linear over the range of c/T 2 that is of interest, and q̂ increases only by

about 28% even for the large value c/T 2 = 4.

2.2 Robustness and infrared sensitivity

Recall from section 1 that the authors of the model (1.2) find that c = 0.127 GeV2 best

reproduces certain aspects of QCD thermodynamics known from lattice calculations [17].

And, recall that we found that the range 0.11 GeV2 < c < 0.18 GeV2 yielded a degree of

nonconformality, parameterized by (ε− 3P )/ε, as in lattice QCD calculations. By plotting

q̂ for values of c/T 2 up to 4, at T = 300 MeV we are allowing for values of c at least

twice as large as is favored by QCD thermodynamics. We see from figure 1 that even over

this wide range of c/T 2, the jet quenching parameter is at most increased by less than

30%. If we take c = 0.13 GeV2, the increase in q̂ is ∼ 10% at T = 300 MeV and ∼ 23%

at T = 200 MeV. We see first of all that the N = 4 SYM result is robust: upon varying

the degree of nonconformality c/T 2 across a wide range, we find only a small increase

in q̂. Second of all, the fact that q̂ increases as we turn on c/T 2 is interesting. Among

conformal theories, if we reduce the number of degrees of freedom (with fermions weighted

by a 7/8 as in the entropy density) by a factor of 47.5/120, i.e. as if going from N = 4

SYM with Nc = 3 to QCD, q̂ is reduced by a factor of
√

47.5/120 ∼ 0.63 [11]. We now

see that this decrease may be partially compensated by an increase in q̂ attributable to

the nonconformality of QCD. Our result that q̂ increases with increasing nonconformality

– 10 –
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has of course only been obtained in a particular toy model; further investigation in other

examples of nonconformal plasmas is called for. One result that corroborates the sign

of the effect of nonconformality on q̂ is the determination that introducing nonzero R-

charge chemical potential(s) in N = 4 SYM, which introduces nonconformality, increases

q̂ [38]. (See also ref. [39].) There is one nonconformal strongly coupled plasma in a (3+1)-

dimensional gauge theory other than N = 4 SYM for which q̂ is known: in the cascading

gauge theory of refs. [40, 12], q̂/(
√

λT 3) decreases with decreasing temperature, which

corresponds to simultaneously decreasing number of degrees of freedom and increasing

nonconformality [19]. Further exploring (and separating) the effects of varying numbers of

degrees of freedom and varying degrees of nonconformality on q̂ requires calculating this

quantity for other nonconformal strongly coupled plasmas, for example that in N = 2∗

SYM [13]. Certainly at present the indications are that all these effects only modify q̂ at

the few tens of percent level, a robustness that is supported by the present investigation of

the effects of nonconformality alone in a toy model. If further study continues to support

the idea that in going from N = 4 SYM to QCD the jet quenching parameter decreases by

a factor
√

47.5/120 ∼ 0.63 by virtue of the decrease in degrees of freedom and increases

by a few tens of percent by virtue of the nonconformality of the QCD plasma at the

temperatures of about (1.5 − 2)Tc explored at RHIC, then the observation [18] that q̂ of

N = 4 SYM theory at T = 300 MeV is in the same ballpark as the range for the time-

averaged ¯̂q extracted in comparison with RHIC data [41] will grow in importance.3

Our results confirm that q̂ is an infrared sensitive quantity. That is, when we introduce

c/T 2 6= 0, modifying the AdS black hole metric at scales of order T but leaving it unmodified

in the ultraviolet, we find that q̂ is affected by this modification. This is consistent with

the interpretation of q̂ as the parameter through which the physics of the strongly coupled

medium at scales of order the temperature enters into the calculation of radiative parton

energy loss and jet quenching. The infrared sensitivity of q̂ comes about in its computation

because in the gravity dual q̂ is described by a string that extends all the way from the

ultraviolet regime to the black hole horizon, probing the gauge theory at all scales down

to of order the temperature.4

3Note also that in going from RHIC to the LHC the dominant change in q̂ will come from its T 3 de-

pendence. If we neglect any smaller changes due to decreases in
√

λ and the degree of nonconformality,

we predict that in going from RHIC to the LHC the increase in q̂ should be proportional to the increase

in multiplicity at mid-rapidity [42]. That is, we predict that the time-averaged ¯̂q extracted in compari-

son with LHC data should be greater than that extracted in comparison with RHIC data by the factor

(dNLHC/dη)/(dNRHIC/dη) [42].
4In addition to the string worldsheet that determines q̂, the light-like Wilson loop also bounds an

extremal world sheet that explores the field theory only on scales comparable to, and to the ultraviolet

of, the Compton wavelength of the test quark whose mass is taken to infinity in defining the Wilson

loop [18, 43, 11, 44, 45]. When written in terms of the parameter z0, the action of this string is identical

for any metric that becomes the AdS metric (1.1) asymptotically in the ultraviolet [45], meaning that it is

infrared insensitive [11]. As we discussed in section 1, in any theory that is described by a generic metric

that becomes the AdS metric (1.1) with parameter z0 in the ultraviolet, any quantity that is specified in

terms of z0 rather than by the temperature (which is determined by the metric near the horizon and is in

general not related to the ultraviolet parameter z0 in any simple way) is infrared insensitive. Thus, the

explicit calculations of ref. [45] demonstrate quantitatively that this string solution only probes physics at

– 11 –
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3. Heavy quark drag and diffusion from AdS/CFT

3.1 Formulation

The relativistic generalization of the Langevin equations for a heavy quark moving through

some thermal medium (see for example refs. [46, 29]) can be written as

dpL

dt
= −µ(pL)pL + ξL(t) , (3.1)

dpT

dt
= ξT (t) , (3.2)

where pL and pT are the longitudinal and transverse momentum of the quark, respectively.

(We have simplified the notation by dropping the spatial indices on transverse quantities.)

Henceforth, we shall denote pL by p. ξL and ξT are random fluctuating forces in the

longitudinal and transverse directions, which satisfy

〈ξL(t)ξL(t′)〉 = κL(p)δ(t − t′) , (3.3)

〈ξT (t)ξT (t′)〉 = κT (p)δ(t − t′) . (3.4)

κL(p) and two times κT (p) describe how much longitudinal and transverse momentum

squared is transferred to the quark per unit time. Note that at zero velocity, κL(0) =

κT (0) whereas for p > 0 one expects that κL(p) 6= κT (p). Also, upon assuming that the

momentum fluctuations of the particle are in equilibrium with the thermal medium, as

appropriate at zero velocity, a fluctuation-dissipation theorem relates µ(0) to κL(0) via the

Einstein relation

µ(0) =
κL(0)

2MT
, (3.5)

where M is the static mass of the quark. The relation (3.5) is not expected to hold for

p > 0.

To compute the various quantities µ(p), κT (p) and κL(p) in the metric (1.2), we use

the following procedure developed in refs. [29, 25, 26]:

1. Find a classical solution to the Nambu-Goto action

SNG =
1

2πα′

∫

dτdσ
√

−dethαβ (3.6)

which describes a trailing string moving with constant velocity [27, 28] in the met-

ric (1.2). Here, h is the metric induced on the string worldsheet.

and beyond the ultraviolet cutoff and is completely insensitive to physics of the strongly coupled plasma

at scales of order the temperature. The two different string world sheets bounded by the light-like Wilson

loop can be thought of as different saddle points in its Minkowski-space path integral representation. This

is a Minkowski-space path integral, with an integrand (proportional to eiS) that is complex for real field

configurations (which have real S). It is defined by analytic continuation, with each of the integrals that

make up the path integral now a contour integral over the complexified configuration space. In this context,

there is no way to use the (imaginary) values of the actions of the two saddle points to determine which

dominates the path integral. In the absence of information about which saddle points lie on the infinite

dimensional analogue of the path of steepest descent, one must use physical considerations. The calculations

of ref. [45] provide strong evidence confirming previous physical arguments: the infrared insensitive string

world sheet does not contribute to the evaluation of the Wilson loop, and hence q̂ [18, 11].

– 12 –
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2. The drag force is given by the momentum flux on the worldsheet of the trailing string

along the radial direction, i.e. [27, 28]

dpi

dt
= − δSNG

δ∂σxi

∣

∣

∣

∣

trailing string

. (3.7)

As we will see below, the right-hand side of (3.7) is a conserved quantity on the

worldsheet and can be evaluated anywhere on the worldsheet.

3. Denote the retarded propagators for ξL and ξT as G
(L)
R and G

(T )
R respectively. Then,

the procedure for determining κL and κT developed in ref. [25, 26] can be cast as

κT,L = − lim
ω→0

2Tws

ω
G

(T,L)
R (ω) , (3.8)

where Tws denotes the temperature on the worldsheet. As we will see, the induced

metric on the trailing worldsheet has a horizon, meaning that the worldsheet metric

can be considered a (1 + 1)-dimensional black hole. Tws is the Hawking temperature

for this worldsheet black hole. Note that at nonzero velocity Tws in general differs

from the temperature T of the plasma itself. At zero velocity, the worldsheet horizon

coincides with that of the spacetime, while at finite velocity the worldsheet horizon

moves closer to the boundary and the corresponding Tws decreases. The reason that

one should use the worldsheet temperature rather the spacetime temperature in this

computation is that the fluctuations ξT (and ξL) in the transverse (and longitudinal)

directions of the trajectory of the quark moving through the gauge theory plasma

arise in the dual gravity description from the fluctuations of the string worldsheet

around the trailing string solution [25, 26]. It is as if the force fluctuations that the

quark in the boundary gauge theory feels are due to the fluctuations of the string

worldsheet to which it is attached.

4. The retarded propagators G
(L,T )
R can be found following the general prescription

given in [47]. One first solves the linearized equation of motion for the worldsheet

fluctuations with the boundary conditions that they are infalling at the worldsheet

horizon and go to unity at the ultraviolet boundary. The retarded propagator is then

given by the action evaluated on this solution (ignoring possible boundary terms at

the horizon).

3.2 Finding the trailing string and calculating the drag

Consider a quark propagating in the x1 direction with velocity v. In this subsection we

shall follow the analysis of refs. [27, 28] to obtain the corresponding trailing string solution

and determine the drag force.

We parametrize the world sheet with t and r and use the ansatz

x1(t, r) = vt + ζ(r) (3.9)

for a late-time steady-state solution. The Nambu-Goto action (3.6) is then

SNG =
1

2πα′

∫

dtdrL (3.10)

– 13 –
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with L given by

L = e
29
20

c R4

r2

√

1 +
r4 − r4

0

R4
ζ ′2 − v2r4

r4 − r4
0

, (3.11)

where prime denotes differentiation with respect to r. The canonical momentum

πζ ≡
r4−r4

0
R4 ζ ′

√

1 +
r4−r4

0
R4 ζ ′2 − v2r4

r4−r4
0

e
29
20

c R4

r2 (3.12)

is conserved, meaning that

ζ ′ =
R4πζ

r4 − r4
0

√

√

√

√

r4 − r4
0 − v2r4

(r4 − r4
0)e

29
10

c R4

r2 − R4π2
ζ

. (3.13)

The integration constant πζ can be fixed by the following argument: both the numerator

and the denominator of the fraction under the square root in (3.13) are positive at r = ∞
and negative at r = r0; since (3.13) is real, both must change sign at the same r; this is

only the case if

πζ =
r2
0v

R2
√

1 − v2
e

29c
√

1−v2R4

20r2
0 . (3.14)

The drag force (3.7) is then

dp1

dt
= − πξ

2πα′

= −
√

λπvT 2

2
√

1 − v2
e

29c
√

1−v2

20π2T2 , (3.15)

where we have used R4 = λα′2 and r0 = πR2T in the last step. The result (3.15) can also

be expressed in terms of the momentum p1 and mass M of the external quark:

dp1

dt
= −

√
λπT 2

2
e

29c
√

1−v2

20π2T2
p1

M
, (3.16)

as obtained previously in ref. [16]. We see that turning on c increases the drag force, but

the effect of the nonconformality becomes weaker at larger v. In fact, for v → 1 the drag

force is independent of c, meaning that in this limit the drag force becomes an infrared

insensitive observable. The effects of the nonconformality are largest in the v → 0 limit: at

low velocities, the drag force is increased by a factor of 1.34 (1.80) for c/T 2 = 2 (c/T 2 = 4).

(As was also the case for q̂, the sign of the effect of nonconformality on the drag force is

corroborated by the determination that introducing nonzero R-charge chemical potential(s)

in N = 4 SYM, which introduces nonconformality, increases the drag force [48].) Finally,

notice that when c is nonzero the drag force is not proportional to the momentum. In

other words, the drag coefficient µ(p1) ≡ − 1
p1

dp1

dt now depends on the velocity and hence

on the momentum p1.
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3.3 Worldsheet fluctuations

The trailing string solution of section 3.2 has x2 = x3 = 0 and so after we change co-

ordinates from r to z = R2/r it is specified by giving the dependence of x1 on t and z.

Using (3.9) and (3.13), this can be written as

dx1

dt
= v (3.17)

and

dx1

dz̄
= − z̄2v

1 − z̄4
e

29c(
√

1−v2−z̄2)

20π2T2

√

√

√

√

√

1 − v2 − z̄4

1 − v2 − z̄4

(

1 − v2 + v2e
29c(

√
1−v2−z̄2)

10π2T2

) , (3.18)

where we have introduced z̄ ≡ z/z0.

Following ref. [26], we now consider small fluctuations around the trailing string solu-

tion, which we denote here by x1
0, namely

x1 = x1
0 + δx1(t, z) , x2 = δx2(t, z) , x3 = δx3(t, z) . (3.19)

We expand the Nambu-Goto action (3.6) to quadratic order in δxi to obtain

SNG = S0
NG +

R2

2πα′

∫

dtdz



Gαβ
L ∂αδx1∂βδx1 +

∑

i=2,3

Gαβ
T ∂αδxi∂βδxi



 , (3.20)

where S0
NG is the unperturbed action for the trailing string solution. The quantities Gαβ

T

and Gαβ
L are given by

Gαβ
T = fT

√
−hhαβ, Gαβ

L = fL

√
−hhαβ , (3.21)

where hαβ is the induced worldsheet metric whose components we can evaluate using (3.17)

and (3.18), obtaining

htt = −R2A
√

1 − v2

ẑ2
e

29c
√

1−v2 ẑ2

20π2T2 , (3.22)

htz = hzt = −R2v2e
29c

√
1−v2

20π2T2

1 − (1 − v2)ẑ4

√

A

B
, (3.23)

and

hzz =
−e

29c
√

1−v2(1−ẑ2)

10π2T2 v4ẑ4 +
[

1 − (1 − v2)ẑ4
]2

ẑ2
√

1 − v2 [1 − (1 − v2)ẑ4]2 B
R2e

29c
√

1−v2 ẑ2

20π2T2 , (3.24)

where we have introduced

ẑ ≡ √
γz̄ =

√
γz/z0 =

√
γzπT , (3.25)

– 15 –



J
H
E
P
0
8
(
2
0
0
8
)
0
4
8

with γ ≡ 1/
√

1 − v2 and defined

A ≡ 1 − ẑ4 , (3.26)

B ≡ 1 − ẑ4

[

1 −
(

1 − e
29c

√
1−v2(1−ẑ2)

10π2T2

)

v2

]

, (3.27)

and where the prefactors in (3.21) are given by

fT ≡ e
29 c

√
1−v2 ẑ2

20 π2 T2

2
√

1 − v2 ẑ2
(3.28)

fL ≡ B

(1 − v2)A
fT . (3.29)

We now make a change of worldsheet coordinates that diagonalizes the worldsheet

metric hαβ . This will simplify the calculation since, as is clear from (3.21), diagonalizing hαβ

will also automatically diagonalize GT and GL. For convenience, we first change coordinates

from z to ẑ. Then, we define a new coordinate

t̂ = t + g(ẑ) (3.30)

where g(ẑ) satisfies

∂g

∂ẑ
=

v2 ẑ2 e
29 c

√
1−v2 (1−ẑ2)
20 π2 T2

(1 − v2)
1
4 [1 − (1 − v2) ẑ4]

√
AB

, (3.31)

which ensures that ht̂ẑ vanishes. In the new (ẑ, t̂) worldsheet coordinate system, the induced

worldsheet metric hα̂β̂ becomes

ht̂t̂ = −R2A

γẑ2
e

29c
√

1−v2 ẑ2

20π2T2 , (3.32)

hẑẑ =
R2

ẑ2 B
e

29c
√

1−v2 ẑ2

20π2T2 . (3.33)

We now see that ht̂t̂ vanishes and hẑẑ diverges at ẑ = 1. This demonstrates that the induced

metric on the (1+1)-dimensional worldsheet has an event horizon at ẑ = 1, corresponding

to z = z0/
√

γ = 1/(πT
√

γ) and r = r0
√

γ = R2πT
√

γ. Note that the worldsheet horizon

moves toward the ultraviolet as v → 1 and γ → ∞. The ẑ < 1 region of the worldsheet

is outside, and to the ultraviolet of, the worldsheet horizon. The ẑ > 1 region is inside,

and to the infrared. Classically, no signal from the interior of the worldsheet horizon

can propagate along the worldsheet to the exterior. The Hawking temperature Tws of the

worldsheet black hole is obtained as follows. First, we note that via a change of coordinates,

the worldsheet metric outside the horizon, in the vicinity of the horizon, takes the form

ds2 = −b2ρ2dt̂2 + dρ2 for some constant b, where the horizon is at ρ = 0. Then, it is

a standard argument that in order to avoid having a conical singularity at ρ = 0 in the
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Euclidean version of this metric, bt̂ must be a periodic with period 2π. We then identify

the period of t̂, namely 2π/b, as 1/Tws. This argument yields

Tws =
T√
γ

√

1 − 29cv2
√

1 − v2

20π2T 2
. (3.34)

The diffusion in momentum space of the moving heavy quark, governed by the diffusion

constants κT and κL, is described in the dual gravity theory by the fluctuations of the

worldsheet outside the worldsheet horizon due to the worldsheet Hawking radiation with

temperature Tws. With Tws in hand, we turn now to the calculation of the diffusion

constants (3.8).

3.4 Calculation of κT

We now calculate the two point function for the transverse fluctuations, starting from the

quantity GT defined in (3.20) and given explicitly in eqs. (3.21)–(3.27) and (3.32) and (3.33).

It turns out that it is convenient to define u ≡ ẑ2 as the radial coordinate in the calculations

of κT and κL. We write the transverse fluctuations part of the action as

ST
NG =

R2

2πα′

∫

dt du [ g1(∂tδy)2 + g2(∂uδy)2 ] , (3.35)

where δy here can be either δx2 or δx3 and where

g1 ≡ G t̂t̂
T

2
√

u
= − 1

4u
3
2 (1 − u2) (1 − v2)

3
4

√
AB

e
29 c u

√
1−v2

20 π2 T2 , (3.36)

g2 ≡ 2
√

uGẑẑ
T =

√
AB

√
u (1 − v2)

1
4

e
29 c u

√
1−v2

20 π2 T2 , (3.37)

and where it is understood that we have rewritten A from (3.26) and B from (3.27) in

terms of u, obtaining

A = 1 − u2 , (3.38)

B = 1 −
[

1 −
(

1 − e
29 c (1−u)

√
1−v2

10 π2 T2

)

v2

]

u2 . (3.39)

The equation of motion for the transverse fluctuations δy is given by

∂2
uδy +

∂ug2

g2
∂uδy +

g1

g2
∂2

t δy = 0 . (3.40)

After a Fourier transformation

δy(t, u) =

∫ ∞

−∞
e−iωtYω(u)

dω

2π
, (3.41)

the equation of motion (3.40) becomes

∂2
uYω +

∂ug2

g2
∂uYω − ω2g1

g2
Yω = 0 . (3.42)
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To examine the behavior of the solution near the worldsheet horizon u = 1, we expand the

coefficients in (3.42) near u = 1 and obtain

∂2
uYω +

1

u − 1
∂uYω +

γ ω2

8 (u − 1)2
(

2 − 29 c v2
√

1−v2

10 π2 T 2

)Yω = 0 , (3.43)

whose solution is

Yω = (1 − u)

± i
√

γ ω

2

s

4− 29cv2
√

1−v2

5π2T2 . (3.44)

For the solution with the “plus” sign, the phase increases as one goes to smaller value of

u, i.e. “outward” from the worldsheet horizon, toward the ultraviolet, meaning that this

corresponds to an outgoing solution, which is to be discarded in our case. We only need

the infalling solution. Therefore, we can write our solution Yω as

Yω = (1 − u2)

− i
√

γ ω

2

s

4− 29cv2
√

1−v2

5π2T2 F (ω, u) , (3.45)

where F (ω, u) is regular at the horizon. We now substitute (3.45) into (3.42) and obtain

an ordinary differential equation for F that takes the form

X F + V ∂uF + ∂2
uF = 0 , (3.46)

where X and V are functions of u and ω (that depend on v and T ) whose leading behavior

at small ω is given explicitly in appendix A.

In order to determine κT , we only need to find the solution F to (3.46) to first order

in ω. We show in appendix A that to zeroth order in ω the only solutions that are regular

at the horizon at u = 1 are F =constant. We normalize Yω so that Yω → 1 at u → 0, and

this determines that we choose F = 1 to zeroth order in ω. To first order in ω the solution

then takes the form

F = 1 + ωZ + O(ω2) , (3.47)

and in appendix A we show that the function Z has the properties that it goes to a constant

at the horizon u = 1 and that

Z → i

3

√
γ e

29c
√

1−v2

20π2T2 u
3
2 + · · · (3.48)

as u → 0. Upon normalizing Yω at u → 0 as we have done, the retarded propagator that

appears in (3.8) is given by [47]

GT
R(ω) = −R2(πT )2

πα′ g2 Y−ω(u)∂uYω(u)
∣

∣

∣

u→0
= −

√
λπT 2g2 ω∂uZ(u)

∣

∣

∣

u→0
+ O(ω2) , (3.49)

where g2 is given in (3.37). Using (3.48) and the fact that g2 = 1

(1−v2)
1
4
√

u
+ O(

√
u) in the

u → 0 limit, we find that with the propagator (3.49) and the world sheet temperature (3.34)

the transverse momentum diffusion constant (3.8) is given by

κT = αT
√

γ
√

λπT 3 (3.50)
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Figure 2: The modification of κT due to nonconformality is given by αT in ( 3.51), which we plot

here versus v at four values of c/T 2.

where

αT = e
29c

√
1−v2

20π2T2

√

1 − 29cv2
√

1 − v2

20π2T 2
. (3.51)

When c = 0, αT = 1 and our result reduces to the known result for N = 4 SYM, derived

in refs. [25, 26]. From our result, we see that turning on c/T 2 increases κT by a factor αT ,

which we have plotted in figure 2 as a function of v for several values of c/T 2. Comparing

αT at v = 0 from (3.51) to our result (3.16) for the drag coefficient evaluated at v = 0,

we see that at v = 0 the Einstein relation (3.5) is valid with c 6= 0. This can be seen as a

consistency check on the model.

We see from figure 2 that the effect of c/T 2 = 4 (c/T 2 = 2) on κT at low velocity is

significant, increasing it by a factor of 1.80 (1.34). This suggests that the nonconformality

in QCD could increase the diffusion constant κT , which has been related to charm quark

energy loss and azimuthal anisotropy in refs. [46, 49], by a significant factor relative to

estimates based upon the N = 4 SYM result. By comparing figure 2 to figure 1, we also see

that at low velocities κT is less robust with respect to the introduction of nonconformality

than q̂: the effects of c/T 2 on κT at low velocity are more than a factor of two larger than

its effects on q̂. However, we also see that αT → 1 for v → 1: at high velocities, κT does not

sense the nonconformality at all. This infrared insensitivity in the high velocity regime can

be understood immediately once we recall that the worldsheet horizon is at z = z0(1−v2)1/4,

and κT only depends on the portion of the string worldsheet that is outside the horizon,

namely between the ultraviolet boundary at z = 0 and z = z0(1− v2)1/4. At high velocity,

z0(1−v2)1/4 itself moves closer and closer toward the boundary, i.e. farther and farther into

the ultraviolet, meaning that κT only probes ultraviolet physics where c is not important.
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3.5 Calculation of κL

The calculation of κL is analogous to that of κT . The relevant action for longitudinal

fluctuation takes the same form as (3.35), with g1 and g2 replaced by

g1 = − 1

4u
3
2 (1 − u2) (1 − v2)

7
4

e
29 c u

√
1−v2

20 π2 T2

√

B

A
, (3.52)

g2 =
1 − u2

√
u (1 − v2)

5
4

e
29 c u

√
1−v2

20 π2 T2

(

B

A

)
3
2

. (3.53)

The solution again takes the form (3.45), with F satisfying (3.46), but with different

expressions for the functions X and V , given in appendix A.2. The expansion (3.47) still

holds, but now Z(u) can only be obtained numerically. Again, as described in appendix A,

the solution for Z is determined uniquely by requring that Z be regular at u = 1 and that

Z → 0, so that Yω → 1, as u → 0. We find that κL is given by

κL = 2γ− 1
2

√
λπT 3

√

1 − 29cv2
√

1 − v2

20π2T 2
g2

(

∂uZ

i

)

∣

∣

∣

∣

∣

u→0

. (3.54)

Near u = 0, g2 can be expanded as g2 = 1

(1−v2)
5
4
√

u
+ O(

√
u), which reduces (3.54) to

κL = αLγ
5
2

√
λπT 3 , (3.55)

where

αL =
2√
γ

√

1 − 29cv2
√

1 − v2

20π2T 2

(

∂uZ

i
√

u

)

∣

∣

∣

∣

∣

u→0

(3.56)

depends on v and c/T 2. We have checked analytically that αL = 1 for c = 0, meaning that

our result reduces to that for N = 4 SYM from refs. [25, 26] when the nonconformality is

turned off. That is, αL is the factor by which κL is modified when we introduce nonconfor-

mality via nonzero c/T 2. At nonzero c/T 2, we compute Z(u) and hence αL numerically.

In figure 3 we plot αL versus v at four values of c/T 2. The factor αL is comparable to but

somewhat less than its counterpart αT for the transverse momentum diffusion constant

κT , plotted in figure 2. As v → 0, αL and αT become equal because there is no difference

between (diffusion in) longitudinal and transverse momentum when v = 0. The effects

of c/T 2 on κL at small velocity are more than twice as large as its effects on q̂, but κL

becomes completely unaffected by c/T 2, namely infrared insensitive, as v → 1. We also

see that there is a range of velocities near 1 for which αL < 1.

3.6 Robustness and infrared sensitivity

The effects of the nonconformality we have introduced on all three of the quantities that we

have computed that describe the drag and diffusion of a heavy quark moving through the

plasma are comparable at low velocities. For c/T 2 = 1, 2, 4, the nonconformality serves to

increase all three quantities that we have computed, by factors of 1.16, 1.34, 1.80 at v = 0.
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Figure 3: The modification of κL due to nonconformality is given by αL in ( 3.56), which we plot

here versus v at four values of c/T 2.

So, particularly at lower temperatures where c/T 2 is larger, the tendency for the drag

and diffusion coefficients to increase with nonconformality should be included in making

estimates of these quantities for the QCD plasma. We also showed that the energy loss

on a heavy quark moving through the plasma with v 6= 0 is not described by a velocity-

independent drag coefficient. If we define the drag coefficent −1
p

dp
dt then this quantity

depends significantly on the velocity of the quark.

All three quantities that we have computed in this section become completely infrared

insensitive for v → 1. The N = 4 SYM results for µ, κT and κL are conventionally quoted

in terms of the temperature T , but their infrared insensitivity for v → 1 demonstrates

that in this regime they should really be quoted in terms of z0, with z0 understood as

a parameter that specifies the asymptotic (z → 0) behavior of the metric. In a generic

metric that is given asymptotically by the AdS black hole metric (1.1), z0 is not related in

any simple way to the temperature T , which is determined by the metric in the vicinity

of the horizon. And, in the v → 1 regime, µ, κT and κL are determined by z0 not by

T . The reason for the infrared insensitivity of all three quantities is the same. The drag

and diffusion of the quark is described by that segment of the attached string worldsheet

that is outside the worldsheet event horizon at z = z0(1 − v2)
1
4 . As v approaches 1, this

worldsheet event horizon moves to smaller and smaller z, meaning that the segment of

the worldsheet that is outside its event horizon, namely at z < z0(1 − v2)
1
4 , explores the

metric only at smaller and smaller z, meaning that it describes the physics of the more and

more ultraviolet sector of the gauge theory. Because the metric that we are using is given

asymptotically at small z by the AdS black hole metric (1.1), independent of c, the drag
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and diffusion of the quark become completely insensitive to c/T 2 for v → 1. That is, they

become infrared insensitive, probing the gauge theory only at more and more ultraviolet

scales. We saw in section 2 that, in contrast, the jet quenching parameter q̂, which is

defined at v = 1, is infrared sensitive.

4. Quark-antiquark potential and screening length

One of the early, classic, computations done using the AdS/CFT correspondence was the

computation of the potential between a static quark and antiquark separated by a distance

L in N = 4 SYM theory, first at zero temperature where the potential is Coulomb-like,

proportional to
√

λ/L [35], and then at nonzero temperature [36], where, to order
√

λ

in the strong coupling expansion, the screened potential is Coulomb-like for L ≪ Lc(T )

and flat for L ≫ Lc(T ) (up to order λ0 contributions that fall exponentially with L [50]).

The screening length turns out to be Lc = 0.24/T . When L < Lc(T ), the potential is

determined to order
√

λ at strong coupling by the area of a string worldsheet bounded by

the worldlines of the quark and antiquark, with the worldsheet “hanging” into the AdS

black hole spacetime (1.1), “suspended” from the test quark and antiquark that are located

at the ultraviolet boundary at z = 0.

In refs. [30, 11], the analysis of screening was extended to the case of a quark-antiquark

pair moving through the plasma with velocity v. In that context, it proved convenient to

define a slightly different screening length Ls, which is the L beyond which no connected

extremal string world sheet hanging between the quark and antiquark can be found. At v =

0, Ls = 0.28/T [36]. At nonzero v, up to small corrections that have been computed [30, 11],

Lmeson
s (v, T ) ≃ Ls(0, T )(1 − v2)1/4 ∝ 1

T
(1 − v2)1/4 . (4.1)

This result, also obtained in [31, 32] and further explored in [51 – 53], has proved robust in

the sense that it applies in various strongly coupled plasmas other than N = 4 SYM [51 –

53], including some which are made nonconformal via the introduction of R-charge chemical

potentials. The robustness of the result (4.1) has been tested in a second sense by analyz-

ing the potential and screening length defined by a configuration consisting of Nc external

quarks arranged in a circle of radius L, a “baryon”, moving through the strongly coupled

plasma [54]. In order to obtain a baryon-like configuration, the Nc strings hanging down

into the AdS black hole spacetime must end on a D5-brane [55]. Even with this quali-

tatively new ingredient, a screening length once again emerges naturally, and obeys (4.1)

for “baryons” moving through the plasma [54]. The velocity dependence of the screen-

ing length (4.1) suggests that in a theory containing dynamical heavy quarks and meson

bound states (which N = 4 SYM does not) the dissociation temperature Tdiss(v), defined

as the temperature above which mesons with a given velocity do not exist, should scale

with velocity as [30]

Tdiss(v) ≃ Tdiss(v = 0)(1 − v2)1/4 , (4.2)

since Tdiss(v) should be the temperature at which the screening length Lmeson
s (v) is compa-

rable to the size of the meson bound state. The scaling (4.2) indicates that slower mesons
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can exist up to higher temperatures than faster ones, a result which has observable conse-

quences for charmonium (bottomonium) production as a function of transverse momentum

in heavy ion collisions at RHIC (LHC) [30, 11]. This result has proved robust in a third

sense, in that (4.2) has also been obtained by direct analysis of the dispersion relations of

actual mesons in the plasma [56, 57], introduced by adding heavy quarks described in the

gravity dual by a D7-brane whose fluctuations are the mesons [58, 56, 57]. These mesons

have a limiting velocity whose temperature dependence is equivalent to (4.2), up to few

percent corrections that have been computed [57].

In this section, we shall return to the velocity-dependent screening length defined

by a quark-antiquark pair moving through the plasma and test the robustness of (4.1)

in yet one more way by repeating the calculation of Ls(v, T ) from refs. [30, 11] in the

metric (1.2) that incorporates the nonconformal deformation whose consequences we are

exploring throughout the present paper.

4.1 Calculating the potential

Consider an external quark-antiquark dipole moving with velocity v = tanh η, where η is

the rapidity of the dipole, along the −x3 direction. We choose the quark and antiquark to

be separated by a distance L, oriented in the x1 direction. It proves convenient to boost

into a frame in which the dipole is at rest in a moving medium — it feels a “hot wind” —

via a Lorentz transformation (t, x3) → (t′, x′
3):

dt = dt′ cosh η − dx′
3 sinh η (4.3)

dx3 = −dt′ sinh η + dx′
3 cosh η . (4.4)

In the dipole rest frame, the spacetime metric describing the nonconformal hot wind is

obtained by applying the Lorentz transformation to the metric (1.2), obtaining

ds2 =
R2

z2
e

29cz2

20

{[

sinh2 η −
(

1 − z4

z4
0

)

cosh2 η

]

dt′2 +

[

cosh2 η −
(

1 − z4

z4
0

)

sinh2 η

]

dx′2
3

− 2
z4

z4
0

sinh η cosh ηdt′dx′
3 + dx2

1 + dx2
2 +

dz2

1 − z4

z4
0

}

. (4.5)

To evaluate the potential between a static quark and antiquark in this background we first

need to evaluate the action of a rectangular time-like Wilson loop whose long sides, of

length T , are aligned with the t′ axis and whose short sides, of length L, are oriented in

the x1 direction. We then need to subtract the action of a separated quark and antiquark,

each trailing a string described as in section 3.2.

To evaluate the Nambu-Goto action of the string worldsheet bounded by the rectan-

gular Wilson loop that describes the moving dipole, we parametrize the string worldsheet

by τ = t′ and σ = x1 ∈ [−L
2 , L

2 ]. The spacetime coordinates of the worldsheet are then

given by (τ, σ, 0, 0, z(σ)), and its Nambu-Goto action (3.6) is

Sdipole
NG =

R2T
2πα′

∫ L
2

−L
2

dσ
e

29cz2

20

z2

√

√

√

√

[

− sinh2 η +

(

1 − z4

z4
0

)

cosh2 η

](

1 +
z′2

1 − z4

z4
0

)

, (4.6)
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where we have denoted ∂σz by z′. We must extremize this action in order to determine

z(σ), subject to the boundary conditions z(±L
2 ) = 0. Note that z(σ) is symmetric about

σ = 0, which is where z(σ) reaches its maximum value which we shall denote z∗. Note

also that the integration over [−L
2 , 0] is the same as [0, L

2 ]. With a change of variables, the

action (4.6) can be expressed as an integral over z:

Sdipole
NG =

R2T
πα′

∫ z∗

0
dz L (4.7)

with the Lagrangian

L =
e

29cz2

20

z2

√

√

√

√

[

− sinh2 η +

(

1 − z4

z4
0

)

cosh2 η

](

1

z′2
+

1

1 − z4

z4
0

)

. (4.8)

Since the Lagrangian has no explicit dependence on σ, the corresponding Hamiltonian

H = z′
∂L
∂z′

− L

= −e
29cz2

20

z2

√

√

√

√

√

[

− sinh2 η +
(

1 − z4

z4
0

)

cosh2 η
] (

1 − z4

z4
0

)

1 − z4

z4
0

+ z′2
(4.9)

is “conserved”, by which we mean that it is independent of z. In particular,

H(z) = H(z∗) = −e
29cz2

∗
20

z2
∗

√

− sinh2 η +

(

1 − z4
∗

z4
0

)

cosh2 η , (4.10)

where in the evaluation of H(z∗) we have used the fact that z′ = 0 at z = z∗. We can now

rearrange (4.9) and (4.10) to obtain an expression for z′, namely

z′ = ±
√

(

1 − z4

z4
0

)(

q(z∗)

q(z)
− 1

)

, (4.11)

where the + (−) sign applies for −L/2 ≤ σ ≤ 0 (for 0 ≤ σ ≤ L/2) and where we have

defined

q(z) ≡ e−
29cz2

10 z4z4
0

z4
0 − z4 cosh2 η

. (4.12)

Upon substituting (4.11) into (4.7), we find

Sdipole
NG =

√
λT
π

∫ z∗

0
dz

e
29cz2

20

z2

√

√

√

√

√

(

1 − z4

z4
0

)

cosh2 η − sinh2 η
(

1 − z4

z4
0

)(

1 − q(z)
q(z∗)

) , (4.13)

where we have used R2/α′ =
√

λ.
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The action (4.13) is written in terms of z∗, the turning point of the string worldsheet,

rather than in terms of L, the separation between the quark and antiquark. L and z∗ are

related by

L

2
=

∫ z∗

0

dz

z′
=

∫ z∗

0

dz
√

(

1 − z4

z4
0

)(

q(z∗)
q(z) − 1

)

. (4.14)

We will express our results in terms of L

The action (4.13) contains not only the potential between the quark-antiquark pair but

also the (infinite) masses of the quark and antiquark considered separately in the moving

medium. We must therefore subtract the (infinite) action 2S0
NG of two independent quarks,

namely

E(L)T = Sdipole
NG − 2S0

NG , (4.15)

in order to extract the potential E(L). The string configuration corresponding to a single

quark at rest in the moving medium is obtained from the trailing string solution described in

our analysis of heavy quark drag in section 3.2 by substituting (3.13) and (3.14) into (3.10)

and (3.11), changing variables from r to z, and boosting to the frame in which the quark

is at rest and the plasma is moving. We find

S0
NG =

√
λT
2π

∫ z0

0
dz

e
29 c z2

10

z2

√

√

√

√

z4 cosh2 η − z4
0

e
29 c z2

10 (z4 − z0
4) + e

29 c z0
2

10 cosh η z4 sinh2 η

. (4.16)

Finally, the quark-antiquark potential E(L) is obtained by substituting (4.16) and (4.13)

into (4.15) and using (4.14) to relate z∗ to L. We have checked that for c = 0 these

expressions all reduce to those in ref. [11].

In order to make a plot of E(L), we use (4.13) and (4.14) to evaluate E and L at

a series of values of the parameter z∗, performing the integrals numerically. Then, in

figure 4 we plot E/(
√

λT ) versus LπT for four values of the nonconformality c/T 2, for a

quark-antiquark pair moving with rapidity η = 1. Each curve has two branches that meet

at a cusp, with the cusp occurring at L = Ls, the largest value of L at which a string

worldsheet connecting the quark and antiquark can be found. The lower branch is the

potential of interest. The upper branch describes unstable string configurations [59]. Two

branches arise because L(z∗) in (4.14) is not monotonic: every value of L < Ls is obtained

at two different values of z∗. For L > Ls, E/
√

λ vanishes. We therefore identify Ls as

the screening length. (At low velocities this introduces a small imprecision since E(Ls) is

just positive and the screening length should then be identified as the L at which the lower

branch crosses E = 0.)

4.2 Robustness and infrared sensitivity of the screening length

In figure 5, we illustrate the velocity dependence of the screening length Ls for four values

of the nonconformality c/T 2. We have plotted LsπT
√

cosh η; to the degree that the curves

are flat, we can conclude that the velocity dependence is LsπT ∝ 1/
√

cosh η = (1 − v2)1/4

as in (4.1). We see from the figure that this is the leading velocity dependence at large η,
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Figure 4: The potential E(L) between a quark and antiquark moving through the plasma with

rapidity η = 1, for four different values of the nonconformality c/T 2. We plot E/(
√

λT ) versus

LπT . Each curve has two branches that meet at a cusp at L = Ls, with the lower branch being

the potential of interest. For each curve, the maximum possible L at which a string worldsheet

connecting the quark and antiquark can be found occurs at the cusp, L = Ls.

as can also be demonstrated analytically [11]. And, we see that this leading dependence

describes the velocity dependence to within corrections of order 20% all the way down to

v = 0. These conclusions hold for c 6= 0 as for c = 0, although the corrections at small

velocity grow somewhat, meaning that we have successfully tested the robustness of the

velocity scaling (4.1) against the introduction of nonconformality via c/T 2.

If we now look at the effects of c/T 2 on the value of Ls, not just on its leading velocity

dependence, we see that turning on the nonconformality parameter results in a modest

increase in Ls. The effect is greatest at v = 0, but even there Ls increases by only about

20% for c/T 2 = 4. This means that, among the five observables that we have analyzed

and within the model we have employed, Ls is the most robust against the introduction of

nonconformality. At large velocities, Ls becomes completely c-independent, meaning that

at large velocities it is infrared insensitive. This can be understood as follows. In order for

the right-hand side of (4.10) to be real, the turning point of the string worldsheet z∗, and

thus the entire worldsheet, must lie somewhere within 0 ≤ z ≤ z0/
√

cosh η = z0(1− v2)1/4.

This means that in the high velocity limit, the string worldsheet only probes the the small-

z, ultraviolet, region of the metric where the effects of c are not felt. To put it more simply,

since as v → 1 the screening length shrinks, LsπT ∝ (1−v2)1/4, the quark-antiquark dipole

becomes sensitive only to more and more ultraviolet physics of the plasma.

The authors of ref. [51] have shown that in the cascading gauge theory of refs. [40, 12]

Ls is affected by the introduction of nonconformality even at large velocity. This does not
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Figure 5: LsπT
√

cosh η versus rapidity η at four values of c/T 2.

contradict our conclusion that Ls becomes infrared insensitive at high velocity because this

theory includes nonconformality at all scales, not just in the infrared.5 Furthermore, the

meson dispersion relations analyzed in refs. [56, 57] indicate that the size of the largest

stable mesons moving through the plasma with a given velocity shrinks with increasing

velocity in the same way that Ls shrinks,6 indicating that if the meson dispersion relations

were to be studied in a nonconformal model like the one that we have analyzed, they too

would become infrared insensitive for mesons moving with high velocity.

We have seen that in addition to being the leading velocity dependence of Ls for

v → 1, the expression LsπT ∝ (1 − v2)1/4 provides a reasonable description at all veloci-

ties. This velocity dependence can have consequences for the pT -dependence of charmonium

5Our results may provide a counterexample to a conjecture made in refs. [51, 53]. Upon writing Ls ∝
(1− v2)p, these authors suggested the relationship ( 1

4
−p) ∝ ( 1

3
− v2

s), where vs is the velocity of sound. We

find p = 1
4
, but v2

s is almost certainly not 1
3

with c 6= 0. Firm conclusions cannot be drawn, however, since,

as explained in ref. [17] and section 1, we cannot compute thermodynamic quantities like vs reliably in the

model we are employing because the deformed metric (1.2) is not a solution to supergravity equations of

motion.
6The mesons are described by fluctuations of a D7-brane. Stable mesons moving through the plasma

with a given velocity v can be found for a range of quark masses M extending upward from some minimum

possible M/T . The fluctuations corresponding to stable mesons with the smallest possible M/T for a given

v turn out to be well localized in z at the value of z corresponding to the point where the D7-brane gets

closest to the black hole. According to the standard holographic relationship between position in z and

scale in the gauge theory, the location in z of this “tip” of the D7-brane therefore corresponds to the size in

the gauge theory of the largest stable mesons with a given propagation velocity v. The results of ref. [56, 57]

show that this size decreases with increasing velocity proportional to (1 − v2)1/4, just like the screening

length Ls.
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(bottomonium) production in heavy ion collisions at RHIC (LHC), as it suggests that if

temperatures close to but below that at which a particular quarkonium species dissoci-

ates at rest are achieved, the production of this species would drop for pT above some

threshold [30, 11]. In this context, the quarkonium velocities that are relevant will not be

particularly close to v → 1, meaning that Ls in the relevant regime will not be infrared

insensitive.

5. Outlook

We have found that the drag and momentum diffusion constants that describe a heavy

quark moving through the strongly coupled plasma and the screening length for a quark-

antiquark pair moving through the plasma all become infrared insensitive as v → 1. Al-

though we used a particular toy model to diagnose this fact, in each case we can understand

it as a consequence of intrinsic attributes of the quantity in question, meaning that the

conclusion of infrared insensitivity at high velocity transcends the particular model. In

the case of the screening length, at high velocity it becomes small which means that in

the v → 1 limit it only probes the ultraviolet physics of the plasma. (In the regime of

velocities accessible to quarkonium mesons produced in heavy ion collisions, the screening

length retains some infrared sensitivity.) In the case of the drag and momentum diffusion

constants, at high velocity they are determined in their dual gravity description by the

shape and fluctuations of that portion of their trailing string worldsheet that is outside,

namely to the ultraviolet of, a worldsheet horizon that itself moves farther and farther into

the ultraviolet as the quark velocity increases. In the limit of high velocity, all four of these

quantities are only sensitive to the short distance physics of the plasma, namely to physics

in a regime where the N = 4 SYM plasma is strongly coupled but the quark-gluon plasma

in QCD is not. The jet quenching parameter, on the other hand, is infrared sensitive even

though it is defined at v = 1. Again, this arises from an intrinsic attribute of the quantity

in question, in this case the fact that in its dual gravity description the jet quenching

parameter is defined by a string worldsheet that extends all the way from the ultraviolet

boundary of the metric at z = 0 to the black hole horizon and thus probes physics of the

plasma at all scales down to of order the temperature.

Our investigation of their infrared sensitivity provides a new illustration of the qualita-

tive distinction between the momentum diffusion constants κT and κL on the one hand and

the jet quenching parameter q̂ on the other, which arise when two noncommuting limits

are taken in opposite orders [11, 60]. We have already noted that κT and κL are only

well-defined at v → 1 if we take this limit while satisfying the criterion (1.4), for example

by taking the M → ∞ limit first. If the M → ∞ limit is taken before the v → 1 limit (more

generally, if (1.4) is satisfied), the quark trajectories for which κT and κL are defined are

always timelike, even as v → 1. On the other hand, q̂ is determined by a strictly light-like

Wilson loop. (The light-like Wilson lines should be thought of as describing trajectories of

the gluons radiated from the hard parton that is losing energy as it traverses the medium.)

We can introduce a quark mass M as an ultraviolet regulator in the definition of the Wilson

loop. Then, in order to define a light-like Wilson loop in the gauge theory we must first
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take v → 1, and only then take the regulator M → ∞, since if we took the limits in the

opposite order the Wilson loop would not be light-like. Our investigations show that q̂,

defined via the light-like Wilson loop, is infrared sensitive: it probes the properties of the

strongly coupled plasma at all scales down to those of order the temperature. In contrast,

if one tries to push κT and κL to v → 1 while satisfying (1.4) one obtains observables that

are only sensitive to the ultraviolet physics of the plasma, where N = 4 SYM is unlikely

to be a good guide to QCD.

It would be a significant advance to find other ratios of observables that are (even close

to) as universal as η/s, which is the same for all gauge theories with dual gravity descrip-

tions in the strong coupling and large-Nc limit. Finding infrared sensitive observables is

a prerequisite, since no infrared insensitive observable can be universal. Both η and s are

infrared sensitive quantities; their ratio turns out to be universal. Our results suggest two

further infrared sensitive observables: the jet quenching parameter q̂, defined at v = 1, and

the v = 0 drag coefficient and momentum diffusion constant, which are related by (3.5). It

is an open question whether there are ratios involving either of these observables that are

universal.

If we take as a benchmark value c/T 2 = 4, which corresponds to about twice the

level of nonconformality indicated by lattice QCD calculations of the conformal anomaly

ε− 3P at T ∼ 300 MeV, we find that turning on this level of nonconformality in the model

spacetime (1.2) that we have analyzed increases the jet quenching parameter by about

30%, increases the quark-antiquark screening length by about 20% at low velocity, and

increases the heavy quark drag, transverse momentum diffusion, and longitudinal momen-

tum diffusion all by about 80%, again at low velocity. The effects of nonconformality on

the latter four quantities all vanish at high velocities, as discussed above. The possibility of

a significant enhancement in the transverse momentum diffusion constant at low velocity

introduced by turning on a degree of nonconformality comparable to that in QCD ther-

modynamics should be taken into account in future comparisons to charm quark energy

loss and azimuthal anisotropy as in refs. [46, 49]. Note also that the drag coefficient is no

longer a velocity-independent constant when nonconformality is turned on, decreasing by

almost a factor of two as v is increased from near zero to near one with c/T 2 = 4. The

fact that the slowing of a moving heavy quark is no longer governed simply by dp/dt ∝ −p

in a strongly coupled but nonconformal plasma generalizes beyond the toy model context

within which we have discerned it.

Our evaluation of the robustness of the five quantities we have computed against the

introduction of nonconformality can serve as a partial and qualitative guide to estimating

how these quantities change in going from N = 4 SYM to QCD. A more complete un-

derstanding requires studying the effects of changing the number of degrees of freedom in

addition to introducing nonconformality. And, our results for robustness are only quanti-

tatively valid within the model in which we have obtained them, making it important to

perform analyses like ours in other contexts in which nonconformality can be turned on.

Both these lines of thought serve as strong motivation for carrying out a study like the one

in this paper for the plasma of strongly coupled N = 2∗ gauge theory [13].
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A. Some technical details

A.1 Technical details needed in the calculation of κT

In section 3.4, we calculate the transverse momentum diffusion constant κT by determining

the two point function for the transverse fluctuations of the worldsheet of the trailing string.

The equation of motion for the Fourier transform of the transverse fluctuations, Yω, is given

in (3.42), and solutions with the correct behavior (3.45) near the horizon u = 1 are then

specified by the ordinary differential equation (3.46) for F (ω, u), defined in (3.45). The

differential equation (3.46) contains two functions X and V that we did not specify in

section 3.4. To lowest order in ω, these functions are given by

X = X1ω + O(ω2) , (A.1)

and

V = V0 + O(ω) , (A.2)

where

X1 = − i
√

γ

20π (1 − u2)2
√

4π2 − 29 c v2
√

1−v2

5 T 2

{

−40π2u2 − 20π2
(

1 − u2
)

+
1

T 2

[

−u2 v2 + e−
29 c (1−u)

√
1−v2

10 π2 T2 (1 − u2 (1 − v2))

]

[

10π2T 2u2
(

1 − 3u2
)

v2

− e−
29 c (1−u)

√
1−v2

10 π2 T2

(

29 c u(1 − u2)(1 − u2(1 − v2))
√

1 − v2

− 10π2T 2(1 + u2(2 − v2) − 3u4(1 − v2))
)

]}

(A.3)

and

V0 = − 1

20π2T 2u (1 − u2)
(

− u2v2 + e−
29 c (1−u)

√
1−v2

10 π2 T2 (1 − u2 (1 − v2))
)

× (A.4)

×
{

10π2T 2u2
(

1 − 3u2
)

v2 − e−
29c(1−u)

√
1−v2

10 π2 T2

[

29 cu(1 − u2)
(

1 − u2(1 − v2)
)

√

1 − v2

− 10π2T 2
(

1 + u2(2 − v2) − 3u4(1 − v2)
)

]

}

.
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In this appendix, we shall solve the equation (3.46) for F , first to zeroth order in ω and

then to first order.

To zeroth order in ω, (3.46) reads

V0∂uF + ∂2
uF = 0 . (A.5)

We can solve this equation upon noticing that near u = 1, V0 can be expanded in powers

of (1 − u) and takes on the simple form

V0 = − 1

1 − u
+ O(1) . (A.6)

This means that the only solutions to (A.5) that are regular at u = 1 are constant solutions,

with ∂uF = 0. Normalizing Yω such that Yω → 1 in the u → 0 limit corresponds to

choosing the constant solution F = 1. This normalization is required if one is to preserve

the standard AdS/CFT relationship between the fluctuations of the string worldsheet in

the bulk, δy, and operators and sources in the gauge theory on the boundary at u = 0.

In particular, it is required in order for the retarded propagator GR to be given by (3.49).

The same normalization is also used in the calculation of κL.

Now, working to first order in ω and knowing that F = 1 to zeroth order, we write F

as

F = 1 + ωZ , (A.7)

a form that we used in (3.47). The first order terms in the differential equation (3.46) then

become

X1 + V0∂uZ + ∂2
uZ = 0 . (A.8)

We now define

W ≡ −i∂uZ , (A.9)

and obtain a first order differential equation for W (u) given by

X1

i
+ V0W + ∂uW = 0 , (A.10)

where X1 and V0 are given by (A.3) and (A.4). Note that since X1 is imaginary the

equation (A.10) for W has real coefficients. The differential equation (A.10) can be solved

analytically, yielding

W = −
√

u
√

γ

(1 − u2)

√

20π2 − 29 cv2
√

1−v2

T 2

√

e−
29 c

√
1−v2

10 π2 T2

×

× 1
(

−e
29 c

√
1−v2

10 π2 T2 u2v2 + e
29 c u

√
1−v2

10 π2 T2 (1 − u2 (1 − v2))
)

×
{

π

√

5u e−
29 c

√
1−v2

10 π2 T2

(

−e
29 c

√
1−v2

10 π2 T2 u2v2 + e
29 c u

√
1−v2

10 π2 T2 (1 − u2 (1 − v2))
)

+ C
√

1 − u2

√

20π2 − 29 c v2
√

1 − v2

T 2

}

, (A.11)
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where the integration constant C has to be determined by the requirement that W must be

regular at the worldsheet horizon u = 1. To determine C, we expand (A.11) about u = 1,

which yields

W =

√
γ
(

C + 1
2

)

π
√

4π2 − 29 c v2
√

1−v2

5 T 2

1

u − 1
+ O(1) (A.12)

The coefficient of the 1/(u−1) term in (A.12) must vanish, which determines that C = −1
2 .

With C determined, (A.11) constitutes a fully explicit expression for W , which according

to (A.9) should then be integrated to give Z. The further integration constant in Z is fixed

by the requirement that Yω → 1, meaning that Z → 0, for u → 0. In our calculation of

κT , we do not need the entire function Z. According to (3.49), all we need is the leading

term in Z (or W ) at u → 0. From (A.11) we determine that W ∝ √
u in the u → 0 limit,

and upon integrating to determine Z in this regime we obtain (3.48).

A.2 Technical details needed in the calculation of κL

The technical details needed in the calculation of κL are completely analogous to those

described in appendix A.1, including in particular the logic of how the boundary conditions

are satisfied. The only difference is in the functions X1 and V0, which in the longitudinal

case are given by

X1 = − i
√

γ

20π(1 − u2)2
√

4π2 − 29 c v2
√

1−v2

5 T 2

{

−40π2u2 − 20π2(1 − u2)

+
1

T 2
(

−u2v2 + e−
29 c (1−u)

√
1−v2

10 π2 T2 (1 − u2 (1 − v2))
)

[

10π2u2v2T 2(5 − 3u2)

− 58 cu3v2(1 − u2)
√

1 − v2

− e−
29 c (1−u)

√
1−v2

10 π2 T2

(

29 cu(1 − u2)
√

1 − v2
(

1 − u2 (1 − v2)
)

+ 30π2u4T 2(1 − v2) − 10π2 T 2
(

1 + u2 (2 − 5 v2)
)

)]}

,

(A.13)

and

V0 = − 1

20π2T 2u(1 − u2)
(

−u2v2 + e−
29 c (1−u)

√
1−v2

10 π2 T2 (1 − u2(1 − v2))
)

×
{

2u2v2
(

5π2T 2(5 − 3u2) − 29 cu(1 − u2)
√

1 − v2
)

− e−
29 c (1−u)

√
1−v2

10 π2 T2

[

29 cu(1 − u2)
√

1 − v2
(

1 − u2(1 − v2)
)

− 10π2T 2
(

1 + u2(2 − 5v2) − 3u4(1 − v2)
)

]}

. (A.14)
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